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Author’s Preface to Second Edition

Everything has been said before, but since nobody listens we have to keep

going back and beginning all over again.

Andre Gide

Good science writers will always jump at the chance to write a second edition of an earlier

work. Nomatter howhard they try, that first editionwill contain inaccuracies andmislead-

ing remarks. Sentences that seemed brilliant when first conceived will, with the passage of

time, transform into examples of intellectual overreaching. Points too trivial to include in

the original manuscript may now seem like profundities that demand a full explanation.

A second edition provides rueful authors with an opportunity to correct the record.

When the first edition of Principles of Big Data was published in 2013 the field was very

young and therewere few scientists who knewwhat to dowith BigData. The data that kept

pouring in was stored, like wheat in silos, throughout the planet. It was obvious to data

managers that none of that stored data would have any scientific value unless it was prop-

erly annotated with metadata, identifiers, timestamps, and a set of basic descriptors.

Under these conditions, the first edition of the Principles of Big Data stressed the proper

and necessary methods for collecting, annotating, organizing, and curating Big Data. The

process of preparing Big Data comes with its own unique set of challenges, and the First

Edition was peppered with warnings and exhortations intended to steer readers clear of

disaster.

It is now five years since the first edition was published and there have since been hun-

dreds of books written on the subject of Big Data. As a scientist, it is disappointing to me

that the bulk of Big Data, today, is focused on issues of marketing and predictive analytics

(e.g., “Who is likely to buy product x, given that they bought product y two weeks previ-

ously?”); andmachine learning (e.g., driverless cars, computer vision, speech recognition).

Machine learning relies heavily on hyped up techniques such as neural networks and deep

learning; neither of which are leading to fundamental laws and principles that simplify

and broaden our understanding of the natural world and the physical universe. For the

most part, these techniques use data that is relatively new (i.e., freshly collected), poorly

annotated (i.e., provided with only the minimal information required for one particular

analytic process), and not deposited for public evaluation or for re-use. In short, Big Data

has followed the path of least resistance, avoiding most of the tough issues raised in the

first edition of this book; such as the importance of sharing data with the public, the value

of finding relationships (not similarities) among data objects, and the heavy, but inescap-

able, burden of creating robust, immortal, and well-annotated data.
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It was certainly my hope that the greatest advances from Big Data would come as

fundamental breakthroughs in the realms of medicine, biology, physics, engineering,

and chemistry. Why has the focus of Big Data shifted from basic science over to machine

learning? Itmay have something to dowith the fact that no book, including the first edition

of this book, has provided readers with the methods required to put the principles of Big

Data into practice. In retrospect, it was not sufficient to describe a set of principles and

then expect readers to invent their own methodologies.

Consequently, in this second edition, the publisher has changed the title of the book

from “The Principles of Big Data,” to “The Principles AND PRACTICE of Big Data.” Hence-

forth and herein, recommendations are accompanied by the methods by which those

recommendationscanbeimplemented.Thereaderwill findthatallof themethodsfor imple-

menting Big Data preparation and analysis are really quite simple. For the most part, com-

puter methods require some basic familiarity with a programming language, and, despite

misgivings, Python was chosen as the language of choice. The advantages of Python are:

– Python isano-cost, opensource,high-levelprogramming languagethat iseasytoacquire,

install, learn, and use, and is available for every popular computer operating system.

– Python is extremely popular, at the present time, and its popularity seems to be

increasing.

– Python distributions (such as Anaconda) come bundledwith hundreds of highly useful

modules (such as numpy, matplot, and scipy).

– Python has a large and active user group that has provided an extraordinary amount of

documentation for Python methods and modules.

– Python supports some object-oriented techniques that will be discussed in this new

edition

As everything in life, Python has its drawbacks:

– The most current versions of Python are not backwardly compatible with earlier

versions. The scripts and code snippets included in this book should work for most

versions of Python 3.x, but may not work with Python versions 2.x and earlier, unless

the reader is prepared to devote some time to tweaking the code. Of course, these short

scripts and snippets are intended as simplified demonstrations of concepts, and must

not be construed as application-ready code.

– The built-in Pythonmethods are sometimesmaximized for speed by utilizing Random

Access Memory (RAM) to hold data structures, including data structures built through

iterative loops. Iterations through Big Data may exhaust available RAM, leading to the

failure of Python scripts that functioned well with small data sets.

– Python’s implementation of object orientation allows multiclass inheritance (i.e., a

class can be the subclass of more than one parent class). We will describe why this is

problematic, and the compensatorymeasures that wemust take, whenever we use our

Python programming skills to understand large and complex sets of data objects.

The core of every algorithm described in the book can be implemented in a few lines of

code, using just about any popular programming language, under any operating system,
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on any modern computer. Numerous Python snippets are provided, along with descrip-

tions of free utilities that are widely available on every popular operating system. This

book stresses the point that most data analyses conducted on large, complex data sets

can be achieved with simple methods, bypassing specialized software systems (e.g., par-

allelization of computational processes) or hardware (e.g., supercomputers). Readers who

are completely unacquainted with Python may find that they can read and understand

Python code, if the snippets of code are brief, and accompanied by some explanation

in the text. In any case, readers who are primarily concerned withmastering the principles

of Big Data can skip the code snippets without losing the narrative thread of the book.

This second edition has been expanded to stress methodologies that have been over-

looked by the authors of other books in the field of Big Data analysis. These would include:

– Data preparation.

How to annotate data with metadata and how to create data objects composed of triples.

The concept of the triple, as the fundamental conveyor of meaning in the computational

sciences, is fully explained.

– Data structures of particular relevance to Big Data

Concepts such as triplestores, distributed ledgers, unique identifiers, timestamps, concor-

dances, indexes, dictionary objects, data persistence, and the roles of one-way hashes and

encryption protocols for data storage and distribution are covered.

– Classification of data objects

How to assign data objects to classes based on their shared relationships, and the com-

putational roles filled by classifications in the analysis of Big Data will be discussed at

length.

– Introspection

How to create data objects that are self-describing, permitting the data analyst to group

objects belonging to the same class and to apply methods to class objects that have been

inherited from their ancestral classes.

– Algorithms that have special utility in Big Data preparation and analysis

How to use one-way hashes, unique identifier generators, cryptographic techniques, tim-

ing methods, and time stamping protocols to create unique data objects that are immu-

table (never changing), immortal, and private; and to create data structures that facilitate a

host of useful functions that will be described (e.g., blockchains and distributed ledgers,

protocols for safely sharing confidential information, and methods for reconciling iden-

tifiers across data collections without violating privacy).

– Tips for Big Data analysis

How to overcome many of the analytic limitations imposed by scale and dimensionality,

using a range of simple techniques (e.g., approximations, so-called back-of-the-envelope
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tricks, repeated sampling using a random number generator, Monte Carlo simulations,

and data reduction methods).

– Data reanalysis, data repurposing, and data sharing

Why the first analysis of Big Data is almost always incorrect, misleading, or woefully

incomplete, and why data reanalysis has become a crucial skill that every serious Big Data

analystmust acquire. The process of data reanalysis often inspires repurposing of BigData

resources. Neither data reanalysis nor data repurposing can be achieved unless and until

the obstacles to data sharing are overcome. The topics of data reanalysis, data repurpos-

ing, and data sharing are explored at length.

Comprehensive texts, such as the second edition of the Principles and Practice of Big

Data, are never quite as comprehensive as theymight strive to be; there simply is noway to

fully describe every concept andmethod that is relevant to amulti-disciplinary field, such

as Big Data. To compensate for such deficiencies, there is an extensive Glossary section for

every chapter, that defines the terms introduced in the text, providing some explanation of

the relevance of the terms for Big Data scientists. In addition, when techniques and

methods are discussed, a list of references that the readermay find useful, for further read-

ing on the subject, is provided. Altogether, the second edition contains about 600 citations

to outside references, most of which are available as free downloads. There are over 300

glossary items, many of which contain short Python snippets that readersmay find useful.

As a final note, this second edition uses case studies to show readers how the principles

of Big Data are put into practice. Although case studies are drawn frommany fields of sci-

ence, including physics, economics, and astronomy, readers will notice an overabundance

of examples drawn from the biological sciences (particularly medicine and zoology). The

reason for this is that the taxonomy of all living terrestrial organisms is the oldest and best

Big Data classification in existence. All of the classic errors in data organization, and in

data analysis, have been committed in the field of biology. More importantly, these errors

have been documented in excruciating detail and most of the documented errors have

been corrected and published for public consumption. If you want to understand how

Big Data can be used as a tool for scientific advancement, then you must look at case

examples taken from the world of biology, a well-documented field where everything that

can happen has happened, is happening, and will happen. Every effort has been made to

limit Case Studies to the simplest examples of their type, and to provide as much back-

ground explanation as non-biologists may require.

Principles and Practice of Big Data, Second Edition, is devoted to the intellectual con-

viction that the primary purpose of Big Data analysis is to permit us to ask and answer a

wide range of questions that could not have been credibly approached with small sets of

data. There is every reason to hope that the readers of this bookwill soon achieve scientific

breakthroughs that were beyond the reach of prior generations of scientists. Good luck!
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Author’s Preface to First Edition

We can’t solve problems by using the same kind of thinking we used when we

created them.

Albert Einstein

Data pours into millions of computers every moment of every day. It is estimated that the

total accumulated data stored on computers worldwide is about 300 exabytes (that’s 300

billion gigabytes). Data storage increases at about 28% per year. The data stored is peanuts

compared to data that is transmitted without storage. The annual transmission of data is

estimated at about 1.9 zettabytes or 1,900 billion gigabytes [1]. From this growing tangle of

digital information, the next generation of data resources will emerge.

As we broaden our data reach (i.e., the different kinds of data objects included in the

resource), and our data timeline (i.e., accruing data from the future and the deep past), we

need to find ways to fully describe each piece of data, so that we do not confuse one data

item with another, and so that we can search and retrieve data items when we need them.

Astute informaticians understand that if we fully describe everything in our universe, we

would need to have an ancillary universe to hold all the information, and the ancillary uni-

verse would need to be much larger than our physical universe.

In the rush to acquire and analyze data, it is easy to overlook the topic of data prepa-

ration. If the data in our Big Data resources are not well organized, comprehensive, and

fully described, then the resources will have no value. The primary purpose of this book is

to explain the principles upon which serious Big Data resources are built. All of the data

held in Big Data resources must have a form that supports search, retrieval, and analysis.

The analytic methods must be available for review, and the analytic results must be avail-

able for validation.

Perhaps the greatest potential benefit of Big Data is its ability to link seemingly dispa-

rate disciplines, to develop and test hypothesis that cannot be approached within a single

knowledge domain. Methods by which analysts can navigate through different Big Data

resources to create new, merged data sets, will be reviewed.

What exactly, is Big Data? Big Data is characterized by the three V’s: volume (large

amounts of data), variety (includes different types of data), and velocity (constantly accu-

mulating new data) [2]. Those of us who have worked on Big Data projects might suggest

throwing a few more v’s into the mix: vision (having a purpose and a plan), verification

(ensuring that the data conforms to a set of specifications), and validation (checking that

its purpose is fulfilled).
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Many of the fundamental principles of Big Data organization have been described in

the “metadata” literature. This literature deals with the formalisms of data description (i.e.,

how to describe data); the syntax of data description (e.g., markup languages such as

eXtensible Markup Language, XML); semantics (i.e., how to make computer-parsable

statements that convey meaning); the syntax of semantics (e.g., framework specifications

such as Resource Description Framework, RDF, and Web Ontology Language, OWL); the

creation of data objects that hold data values and self-descriptive information; and the

deployment of ontologies, hierarchical class systems whose members are data objects.

The field of metadata may seem like a complete waste of time to professionals who

have succeeded very well, in data-intensive fields, without resorting to metadata formal-

isms.Many computer scientists, statisticians, databasemanagers, and network specialists

have no trouble handling large amounts of data, and they may not see the need to create a

strange new data model for Big Data resources. They might feel that all they really need is

greater storage capacity, distributed over more powerful computers that work in parallel

with one another.With this kind of computational power, they can store, retrieve, and ana-

lyze larger and larger quantities of data. These fantasies only apply to systems that use

relatively simple data or data that can be represented in a uniform and standard format.

When data is highly complex and diverse, as found in Big Data resources, the importance

of metadata looms large. Metadata will be discussed, with a focus on those concepts that

must be incorporated into the organization of Big Data resources. The emphasis will be on

explaining the relevance and necessity of these concepts, without going into gritty details

that are well covered in the metadata literature.

When data originates from many different sources, arrives in many different forms,

grows in size, changes its values, and extends into the past and the future, the game shifts

from data computation to data management. I hope that this book will persuade readers

that faster, more powerful computers are nice to have, but these devices cannot compen-

sate for deficiencies in data preparation. For the foreseeable future, universities, federal

agencies, and corporations will pour money, time, and manpower into Big Data efforts.

If they ignore the fundamentals, their projects are likely to fail. On the other hand, if they

pay attention to Big Data fundamentals, they will discover that Big Data analyses can be

performed on standard computers. The simple lesson, that data trumps computation, will

be repeated throughout this book in examples drawn from well-documented events.

There are three crucial topics related to data preparation that are omitted from virtually

every other Big Data book: identifiers, immutability, and introspection.

A thoughtful identifier systemensures thatall of thedata related toaparticulardataobject

will be attached to the correct object, through its identifier, and to no other object. It seems

simple, and it is, butmany BigData resources assign identifiers promiscuously, with the end

result that information related to a unique object is scattered throughout the resource,

attached to other objects, and cannot be sensibly retrieved when needed. The concept of

object identification isof suchoverriding importance that aBigData resourcecanbeusefully

envisioned as a collection of unique identifiers to which complex data is attached.
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Immutability is the principle that data collected in a Big Data resource is permanent,

and can never bemodified. At first thought, it would seem that immutability is a ridiculous

and impossible constraint. In the real world,mistakes aremade, information changes, and

the methods for describing information changes. This is all true, but the astute Big Data

manager knows how to accrue information into data objects without changing the pre-

existing data. Methods for achieving this seemingly impossible trick will be described

in detail.

Introspection is a term borrowed from object-oriented programming, not often found

in the BigData literature. It refers to the ability of data objects to describe themselveswhen

interrogated. With introspection, users of a Big Data resource can quickly determine the

content of data objects and the hierarchical organization of data objects within the Big

Data resource. Introspection allows users to see the types of data relationships that can

be analyzed within the resource and clarifies how disparate resources can interact with

one another.

Another subject covered in this book, and often omitted from the literature on BigData,

is data indexing. Though there are many books written on the art of the science of so-

called back-of-the-book indexes, scant attention has been paid to the process of preparing

indexes for large and complex data resources. Consequently,most BigData resources have

nothing that could be called a serious index. They might have a Web page with a few links

to explanatory documents, or theymight have a short and crude "help" index, but it would

be rare to find a Big Data resource with a comprehensive index containing a thoughtful

and updated list of terms and links. Without a proper index, most Big Data resources have

limited utility for any but a few cognoscenti. It seems odd to me that organizations willing

to spend hundreds of millions of dollars on a Big Data resource will balk at investing a few

thousand dollars more for a proper index.

Aside from these four topics, which readers would be hard-pressed to find in the exist-

ing Big Data literature, this book covers the usual topics relevant to Big Data design, con-

struction, operation, and analysis. Some of these topics include data quality, providing

structure to unstructured data, data deidentification, data standards and interoperability

issues, legacy data, data reduction and transformation, data analysis, and software issues.

For these topics, discussions focus on the underlying principles; programming code and

mathematical equations are conspicuously inconspicuous. An extensive Glossary covers

the technical or specialized terms and topics that appear throughout the text. As each

Glossary term is "optional" reading, I took the liberty of expanding on technical or math-

ematical concepts that appeared in abbreviated form in the main text. The Glossary pro-

vides an explanation of the practical relevance of each term to Big Data, and some readers

may enjoy browsing the Glossary as a stand-alone text.

The final four chapters are non-technical; all dealing in one way or another with the

consequences of our exploitation of Big Data resources. These chapters will cover legal,

social, and ethical issues. The book ends with my personal predictions for the future of

Big Data, and its impending impact on our futures. When preparing this book, I debated

whether these four chaptersmight best appear in the front of the book, towhet the reader’s
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appetite for the more technical chapters. I eventually decided that some readers would be

unfamiliar with some of the technical language and concepts included in the final

chapters, necessitating their placement near the end.

Readers may notice that many of the case examples described in this book come from

the field of medical informatics. The healthcare informatics field is particularly ripe for

discussion because every reader is affected, on economic and personal levels, by the

Big Data policies and actions emanating from the field of medicine. Aside from that, there

is a rich literature on Big Data projects related to healthcare. As much of this literature is

controversial, I thought it important to select examples that I could document from

reliable sources. Consequently, the reference section is large, with over 200 articles from

journals, newspaper articles, and books. Most of these cited articles are available for free

Web download.

Who should read this book? This book is written for professionals whomanage BigData

resources and for students in the fields of computer science and informatics. Data

management professionals would include the leadershipwithin corporations and funding

agencies whomust commit resources to the project, the project directors whomust deter-

mine a feasible set of goals and who must assemble a team of individuals who, in

aggregate, hold the requisite skills for the task: network managers, data domain special-

ists, metadata specialists, software programmers, standards experts, interoperability

experts, statisticians, data analysts, and representatives from the intended user commu-

nity. Students of informatics, the computer sciences, and statistics will discover that the

special challenges attached to Big Data, seldom discussed in university classes, are often

surprising; sometimes shocking.

By mastering the fundamentals of Big Data design, maintenance, growth, and valida-

tion, readerswill learn how to simplify the endless tasks engendered by BigData resources.

Adept analysts can find relationships among data objects held in disparate Big Data

resources if the data is prepared properly. Readers will discover how integrating Big Data

resources can deliver benefits far beyond anything attained from stand-alone databases.
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Section 1.1. Definition of Big Data

It’s the data, stupid.
Jim Gray

Back in the mid 1960s, my high school held pep rallies before big games. At one of these

rallies, the head coach of the football team walked to the center of the stage carrying a

large box of printed computer paper; each large sheet was folded flip-flop style against

the next sheet and they were all held together by perforations. The coach announced that

the athletic abilities of every member of our team had been entered into the school’s com-

puter (we were lucky enough to have our own IBM-360 mainframe). Likewise, data on our

rival team had also been entered. The computer was instructed to digest all of this infor-

mation and to produce the name of the team that would win the annual Thanksgiving Day

showdown. The computer spewed forth the aforementioned box of computer paper; the

very last output sheet revealed that we were the pre-ordained winners. The next day, we

sallied forth to yet another ignominious defeat at the hands of our long-time rivals.

Fast-forward about 50 years to a conference room at the National Institutes of Health

(NIH), in Bethesda,Maryland. A top-level science administrator is briefingme. She explains

that disease research has grown in scale over the past decade. The very best research initia-

tives are now multi-institutional and data-intensive. Funded investigators are using high-

throughput molecular methods that produce mountains of data for every tissue sample

in a matter of minutes. There is only one solution; we must acquire supercomputers and

a staff of talented programmers who can analyze all our data and tell us what it all means!

TheNIH leadership believed,much asmy high school coach believed, that if you have a

really big computer and you feed it a huge amount of information, then you can answer

almost any question.
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That day, in the conference room at the NIH, circa 2003, I voiced my concerns, indi-

cating that you cannot just throw data into a computer and expect answers to pop out.

I pointed out that, historically, science has been a reductive process, moving from com-

plex, descriptive data sets to simplified generalizations. The idea of developing an expen-

sive supercomputer facility to work with increasing quantities of biological data, at higher

and higher levels of complexity, seemed impractical and unnecessary. On that day, my

concerns were not well received. High performance supercomputing was a very popular

topic, and still is. [Glossary Science, Supercomputer]

Fifteen years have passed since the day that supercomputer-based cancer diagnosis

was envisioned. The diagnostic supercomputer facility was never built. The primary diag-

nostic tool used in hospital laboratories is still the microscope, a tool invented circa 1590.

Today, we augmentmicroscopic findings with genetic tests for specific, keymutations; but

we do not try to understand all of the complexities of human genetic variations. We know

that it is hopeless to try. You can find a lot of computers in hospitals and medical offices,

but the computers do not calculate your diagnosis. Computers in the medical workplace

are relegated to the prosaic tasks of collecting, storing, retrieving, and delivering medical

records. When those tasks are finished, the computer sends you the bill for services

rendered.

Before we can take advantage of large and complex data sources, we need to think

deeply about the meaning and destiny of Big Data.

Big Data is defined by the three V’s:

1. Volume—large amounts of data;.

2. Variety—the data comes in different forms, including traditional databases,

images, documents, and complex records;.

3. Velocity—the content of the data is constantly changing through the

absorption of complementary data collections, the introduction of previously

archived data or legacy collections, and from streamed data arriving from

multiple sources.

It is important to distinguish Big Data from “lotsa data” or “massive data.” In a Big Data

Resource, all three V’s must apply. It is the size, complexity, and restlessness of Big Data

resources that account for the methods by which these resources are designed, operated,

and analyzed. [Glossary Big Data resource, Data resource]

The term “lotsa data” is often applied to enormous collections of simple-format

records. For example: every observed star, its magnitude and its location; the name and

cell phone number of every person living in the United States; and the contents of the

Web. These very large data sets are sometimes just glorified lists. Some “lotsa data” col-

lections are spreadsheets (2-dimensional tables of columns and rows), so large that we

may never see where they end.

Big Data resources are not equivalent to large spreadsheets, and a Big Data resource is

never analyzed in its totality. Big Data analysis is a multi-step process whereby data is

extracted, filtered, and transformed, with analysis often proceeding in a piecemeal, some-

times recursive, fashion. As you read this book, you will find that the gulf between “lotsa

data” and Big Data is profound; the two subjects can seldom be discussed productively

within the same venue.
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Section 1.2. Big Data Versus Small Data

Actually, the main function of Big Science is to generate massive amounts of reliable

and easily accessible data.... Insight, understanding, and scientific progress are gen-

erally achieved by ‘small science.’
Dan Graur, Yichen Zheng, Nicholas Price, Ricardo Azevedo, Rebecca Zufall, and Eran Elhaik [1].

BigData is not small data that has become bloated to the point that it can no longer fit on a

spreadsheet, nor is it a database that happens to be very large. Nonetheless, some profes-

sionals who customarily work with relatively small data sets, harbor the false impression

that they can apply their spreadsheet and database know-how directly to Big Data

resources without attaining new skills or adjusting to new analytic paradigms. As they

see things, when the data gets bigger, only the computer must adjust (by getting faster,

acquiring more volatile memory, and increasing its storage capabilities); Big Data poses

no special problems that a supercomputer could not solve. [Glossary Database]

This attitude, which seems to be prevalent among database managers, programmers,

and statisticians, is highly counterproductive. It will lead to slow and ineffective software,

huge investment losses, bad analyses, and the production of useless and irreversibly

defective Big Data resources.

Let us look at a few of the general differences that can help distinguish Big Data and

small data.

– Goals

small data—Usually designed to answer a specific question or serve a particular goal.

Big Data—Usually designed with a goal in mind, but the goal is flexible and the ques-

tions posed are protean. Here is a short, imaginary funding announcement for Big Data

grants designed “to combine high quality data from fisheries, coast guard, commercial

shipping, and coastal management agencies for a growing data collection that can be used

to support a variety of governmental and commercial management studies in the Lower

Peninsula.” In this fictitious case, there is a vague goal, but it is obvious that there really is

no way to completely specify what the Big Data resource will contain, how the various

types of data held in the resource will be organized, connected to other data resources,

or usefully analyzed. Nobody can specify, with any degree of confidence, the ultimate

destiny of any Big Data project; it usually comes as a surprise.

– Location

small data—Typically, contained within one institution, often on one computer, some-

times in one file.

Big Data—Spread throughout electronic space and typically parceled onto multiple

Internet servers, located anywhere on earth.

– Data structure and content

small data—Ordinarily contains highly structured data. The data domain is restricted

to a single discipline or sub-discipline. The data often comes in the form of uniform

records in an ordered spreadsheet.
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Big Data—Must be capable of absorbing unstructured data (e.g., such as free-text doc-

uments, images, motion pictures, sound recordings, physical objects). The subject matter

of the resource may cross multiple disciplines, and the individual data objects in the

resource may link to data contained in other, seemingly unrelated, Big Data resources.

[Glossary Data object]

– Data preparation

small data—Inmany cases, the data user prepares her own data, for her own purposes.

Big Data—The data comes frommany diverse sources, and it is prepared bymany peo-

ple. The people who use the data are seldom the people who have prepared the data.

– Longevity

small data—When the data project ends, the data is kept for a limited time (seldom

longer than 7 years, the traditional academic life-span for research data); and then

discarded.

Big Data—Big Data projects typically contain data that must be stored in perpetuity.

Ideally, the data stored in a Big Data resource will be absorbed into other data resources.

Many Big Data projects extend into the future and the past (e.g., legacy data), accruing

data prospectively and retrospectively. [Glossary Legacy data]

– Measurements

small data—Typically, the data is measured using one experimental protocol, and the

data can be represented using one set of standard units. [Glossary Protocol]

Big Data—Many different types of data are delivered in many different electronic for-

mats. Measurements, when present, may be obtained by many different protocols. Veri-

fying the quality of Big Data is one of the most difficult tasks for data managers. [Glossary

Data Quality Act]

– Reproducibility

small data—Projects are typically reproducible. If there is some question about the

quality of the data, the reproducibility of the data, or the validity of the conclusions drawn

from the data, the entire project can be repeated, yielding a new data set. [Glossary

Conclusions]

Big Data—Replication of a Big Data project is seldom feasible. In general, themost that

anyone can hope for is that bad data in a Big Data resource will be found and flagged

as such.

– Stakes

small data—Project costs are limited. Laboratories and institutions can usually recover

from the occasional small data failure.

Big Data—Big Data projects can be obscenely expensive [2,3]. A failed Big Data effort

can lead to bankruptcy, institutional collapse, mass firings, and the sudden disintegration
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of all the data held in the resource. As an example, a United States National Institutes of

Health Big Data project known as the “NCI cancer biomedical informatics grid” cost at

least $350 million for fiscal years 2004–10. An ad hoc committee reviewing the resource

found that despite the intense efforts of hundreds of cancer researchers and information

specialists, it had accomplished so little and at so great an expense that a project mora-

torium was called [4]. Soon thereafter, the resource was terminated [5]. Though the costs

of failure can be high, in terms ofmoney, time, and labor, Big Data failuresmay have some

redeeming value. Each failed effort lives on as intellectual remnants consumed by the next

Big Data effort. [Glossary Grid]

– Introspection

small data—Individual data points are identified by their row and column location

within a spreadsheet or database table. If you know the row and column headers, you

can find and specify all of the data points contained within. [Glossary Data point]

Big Data—Unless the Big Data resource is exceptionally well designed, the contents

and organization of the resource can be inscrutable, even to the data managers. Complete

access to data, information about the data values, and information about the organization

of the data is achieved through a technique herein referred to as introspection. Introspec-

tion will be discussed at length in Chapter 6. [Glossary Data manager, Introspection]

– Analysis

small data—Inmost instances, all of the data contained in the data project can be ana-

lyzed together, and all at once.

BigData—With few exceptions, such as those conducted on supercomputers or in parallel

onmultiple computers, Big Data is ordinarily analyzed in incremental steps. The data are ex-

tracted, reviewed, reduced, normalized, transformed, visualized, interpreted, and re-analyzed

using a collection of specialized methods. [Glossary Parallel computing, MapReduce]

Section 1.3. Whence Comest Big Data?

All I ever wanted to do was to paint sunlight on the side of a house.
Edward Hopper

Often, the impetus for Big Data is entirely ad hoc. Companies and agencies are forced to

store and retrieve huge amounts of collected data (whether they want to or not). Generally,

Big Data come into existence through any of several different mechanisms:

– An entity has collected a lot of data in the course of its normal activities and seeks to

organize the data so that materials can be retrieved, as needed.

The BigData effort is intended to streamline the regular activities of the entity. In this case,

the data is just waiting to be used. The entity is not looking to discover anything or to do

anything new. It simply wants to use the data to accomplishwhat it has always been doing;
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only better. The typical medical center is a good example of an “accidental” Big Data

resource. The day-to-day activities of caring for patients and recording data into hospital

information systems results in terabytes of collected data, in forms such as laboratory

reports, pharmacy orders, clinical encounters, and billing data. Most of this information

is generated for a one-time specific use (e.g., supporting a clinical decision, collecting pay-

ment for a procedure). It occurs to the administrative staff that the collected data can be

used, in its totality, to achieve mandated goals: improving quality of service, increasing

staff efficiency, and reducing operational costs. [Glossary Binary units for Big Data, Binary

atom count of universe]

– An entity has collected a lot of data in the course of its normal activities and decides

that there are many new activities that could be supported by their data.

Consider modern corporations; these entities do not restrict themselves to one

manufacturing process or one target audience. They are constantly looking for new oppor-

tunities. Their collected datamay enable them to develop new products based on the pref-

erencesof their loyal customers, to reachnewmarkets, or tomarket anddistribute itemsvia

the Web. These entities will become hybrid Big Data/manufacturing enterprises.

– An entity plans a business model based on a Big Data resource.

Unlike the previous examples, this entity starts with Big Data and adds a physical compo-

nent secondarily. Amazon and FedEx may fall into this category, as they began with a plan

for providing a data-intense service (e.g., the AmazonWeb catalog and the FedEx package

tracking system). The traditional tasks of warehousing, inventory, pick-up, and delivery,

had been available all along, but lacked the novelty and efficiency afforded by Big Data.

– An entity is part of a group of entities that have large data resources, all of whom

understand that it would be to their mutual advantage to federate their data

resources [6].

An example of a federated Big Data resource would be hospital databases that share elec-

tronic medical health records [7].

– An entity with skills and vision develops a project wherein large amounts of data are

collected and organized, to the benefit of themselves and their user-clients.

An example would be amassive online library service, such as the U.S. National Library of

Medicine’s PubMed catalog, or the Google Books collection.

– An entity has no data and has no particular expertise in Big Data technologies, but it

has money and vision.

The entity seeks to fund and coordinate a group of data creators and data holders, whowill

build a Big Data resource that can be used by others. Government agencies have been the

major benefactors. These Big Data projects are justified if they lead to important discov-

eries that could not be attained at a lesser cost with smaller data resources.
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Section 1.4. The Most Common Purpose of Big Data Is to
Produce Small Data

If I had known what it would be like to have it all, I might have been willing to settle

for less.
Lily Tomlin

Imagine using a restaurant locater on your smartphone. With a few taps, it lists the Italian

restaurants located within a 10-block radius of your current location. The database being

queried is big and complex (amap database, a collection of all the restaurants in theworld,

their longitudes and latitudes, their street addresses, and a set of ratings provided by

patrons, updated continuously), but the data that it yields is small (e.g., five restaurants,

marked on a street map, with pop-ups indicating their exact address, telephone number,

and ratings). Your task comes down to selecting one restaurant from among the five, and

dining thereat.

In this example, your data selection was drawn from a large data set, but your ultimate

analysis was confined to a small data set (i.e., five restaurants meeting your search cri-

teria). The purpose of the Big Data resource was to proffer the small data set. No analytic

work was performed on the Big Data resource; just search and retrieval. The real labor of

the Big Data resource involved collecting and organizing complex data, so that the

resource would be ready for your query. Along the way, the data creators had many deci-

sions to make (e.g., Should bars be counted as restaurants? What about take-away only

shops? What data should be collected? How should missing data be handled? How will

data be kept current? [Glossary Query, Missing data]

Big Data is seldom, if ever, analyzed in toto. There is almost always a drastic filtering

process that reduces Big Data into smaller data. This rule applies to scientific analyses.

The Australian Square Kilometre Array of radio telescopes [8], WorldWide Telescope,

CERN’s Large Hadron Collider and the Pan-STARRS (Panoramic Survey Telescope

and Rapid Response System) array of telescopes produce petabytes of data every

day. Researchers use these raw data sources to produce much smaller data sets for

analysis [9]. [Glossary Raw data, Square Kilometer Array, Large Hadron Collider, World-

Wide Telescope]

Here is an example showing how workable subsets of data are prepared from Big Data

resources. Blazars are rare super-massive black holes that release jets of energy that move

at near-light speeds. Cosmologists want to know as much as they can about these strange

objects. A first step to studying blazars is to locate as many of these objects as possible.

Afterwards, various measurements on all of the collected blazars can be compared, and

their general characteristics can be determined. Blazars seem to have a gamma ray signa-

ture that is not present in other celestial objects. The WISE survey collected infrared data

on the entire observable universe. Researchers extracted from theWise data every celestial

body associated with an infrared signature in the gamma ray range that was suggestive of

blazars; about 300 objects. Further research on these 300 objects led the researchers to
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believe that about half were blazars [10]. This is how Big Data research often works; by

constructing small data sets that can be productively analyzed.

Because a common role of Big Data is to produce small data, a question that dataman-

agers must ask themselves is: “Have I prepared my Big Data resource in a manner that

helps it become a useful source of small data?”

Section 1.5. Big Data Sits at the Center of the Research
Universe

Physics is the universe’s operating system.
Steven R Garman

In the past, scientists followed a well-trodden path toward truth: hypothesis, then exper-

iment, then data, then analysis, then publication. The manner in which a scientist ana-

lyzed his or her data was crucial because other scientists would not have access to the

same data and could not re-analyze the data for themselves. Basically, the results and con-

clusions described in the manuscript was the scientific product. The primary data upon

which the results and conclusion were based (other than one or two summarizing tables)

were not made available for review. Scientific knowledge was built on trust. Customarily,

the data would be held for 7 years, and then discarded. [Glossary Results]

In the Big data paradigm the concept of a final manuscript has little meaning. Big Data

resources are permanent, and the data within the resource is immutable (See Chapter 6).

Any scientist’s analysis of the data does not need to be the final word; another scientist can

access and re-analyze the same data over and over again. Original conclusions can be val-

idated or discredited. New conclusions can be developed. The centerpiece of science has

moved from the manuscript, whose conclusions are tentative until validated, to the Big

Data resource, whose data will be tapped repeatedly to validate old manuscripts and

spawn new manuscripts. [Glossary Immutability, Mutability]

Today, hundreds or thousands of individuals might contribute to a Big Data resource.

The data in the resource might inspire dozens of major scientific projects, hundreds of

manuscripts, thousands of analytic efforts, and millions or billions of search and retrieval

operations. The Big Data resource has become the central, massive object around which

universities, research laboratories, corporations, and federal agencies orbit. These orbit-

ing objects draw information from the Big Data resource, and they use the information to

support analytic studies and to publish manuscripts. Because Big Data resources are per-

manent, any analysis can be critically examined using the same set of data, or re-analyzed

anytime in the future. Because Big Data resources are constantly growing forward in time

(i.e., accruing new information) and backward in time (i.e., absorbing legacy data sets), the

value of the data is constantly increasing.

Big Data resources are the stars of the modern information universe. All matter in the

physical universe comes from heavy elements created inside stars, from lighter elements.

All data in the informational universe is complex data built from simple data. Just as stars
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can exhaust themselves, explode, or even collapse under their own weight to become

black holes; Big Data resources can lose funding and die, release their contents and burst

into nothingness, or collapse under their own weight, sucking everything around them

into a dark void. It is an interesting metaphor. In the following chapters, we will see

how a Big Data resource can be designed and operated to ensure stability, utility, growth,

and permanence; features youmight expect to find in amassive object located in the cen-

ter of the information universe.

Glossary
Big Data resource A Big Data collection that is accessible for analysis. Readers should understand that

there are collections of Big Data (i.e., data sources that are large, complex, and actively growing) that

are not designed to support analysis; hence, not Big Data resources. Such Big Data collections might

include some of the older hospital information systems, which were designed to deliver individual

patient records upon request; but could not support projects wherein all of the data contained in

all of the records were opened for selection and analysis. Aside from privacy and security issues, open-

ing a hospital information system to these kinds of analyses would place enormous computational

stress on the systems (i.e., produce system crashes). In the late 1990s and the early 2000s data ware-

housing was popular. Large organizations would collect all of the digital information created within

their institutions, and these data were stored as Big Data collections, called data warehouses. If an

authorized person within the institution needed some specific set of information (e.g., emails sent

or received in February, 2003; all of the bills paid in November, 1999), it could be found somewhere

within the warehouse. For the most part, these data warehouses were not true Big Data resources

because they were not organized to support a full analysis of all of the contained data. Another type

of Big Data collection that may or may not be considered a Big Data resource are compilations of sci-

entific data that are accessible for analysis by private concerns, but closed for analysis by the public. In

this case a scientistmaymake a discovery based on her analysis of a private Big Data collection, but the

research data is not open for critical review. In the opinion of some scientists, including myself, if the

results of a data analysis are not available for review, then the analysis is illegitimate. Of course, this

opinion is not universally shared, and Big Data professionals hold various definitions for a Big Data

resource.

Binary atom count of universe There are estimated to be about 10 8̂0 atoms in the universe. Log2(10) is

3.32192809, so the number of atoms in the universe is 2 8̂0*3.32192809 or 2 2̂66 atoms.

Binary units for Big Data Binary sizes are named in 1000-fold intervals: 1 bit ¼ binary digit (0 or 1);

1 byte ¼ 8 bits (the number of bits required to express an ascii character); 1000 bytes ¼ 1 kilobyte;

1000 kilobytes ¼ 1 megabyte; 1000 megabytes ¼ 1 gigabyte; 1000 gigabytes ¼ 1 terabyte; 1000

terabytes ¼ 1 petabyte; 1000 petabytes ¼ 1 exabyte; 1000 exabytes ¼ 1 zettabyte; 1000 zettabytes ¼
1 yottabyte.

Conclusions Conclusions are the interpretationsmade by studying the results of an experiment or a set of

observations. The term “results” should never be used interchangeably with the term “conclusions.”

Remember, results are verified. Conclusions are validated [11].

Data Quality Act In the United States the data upon which public policy is based must have quality and

must be available for review by the public. Simply put, public policy must be based on verifiable data.

The Data Quality Act of 2002 requires the Office of Management and Budget to develop government-

wide standards for data quality [12].

Data manager This book uses “data manager” as a catchall term, without attaching any specific

meaning to the name. Depending on the institutional and cultural milieu, synonyms and plesionyms

(i.e., near-synonyms) for data manager would include: technical lead, team liaison, data quality

manager, chief curator, chief of operations, project manager, group supervisor, and so on.
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Data object As used in this book, a data object consists of a unique object identifier along with all of the

data/metadata pairs that rightly belong to the object identifier, and that includes one data/metadata

pair that tells us the object’s class.

75898039563441
name G. Willikers
gender male
age 35
is_a_class_member cowboy

In this example, the object identifier, 75898039563441, is followed by its data/metadata pairs, includ-

ing the one pair that tells us that the object (a 35-year-oldman named G.Willikers) belongs to the class

of individuals known as “cowboy.”

The utility of data objects, in the field of Big Data, is discussed in Section 6.2.

Data point The singular form of data is datum. Strictly speaking, the term should be datum point or

datumpoint. Most information scientists, myself included, have abandoned consistent usage rules

for the word “data.” In this book, the term “data” always refers collectively to information, numeric

or textual, structured or unstructured, in any quantity.

Data resource A collection of data made available for data retrieval. The data can be distributed over

servers located anywhere on earth or in space. The resource can be static (i.e., having a fixed set of

data), or in flux. Plesionyms for data resource are: data warehouse, data repository, data archive,

and data store.

Database A software application designed specifically to create and retrieve large numbers of data

records (e.g., millions or billions). The data records of a database are persistent, meaning that the

application can be turned off, then on, and all the collected data will be available to the user.

Grid A collection of computers and computer resources (typically networked servers) that is coordinated

to provide a desired functionality. In the most advanced Grid computing architecture, requests can be

broken into computational tasks that are processed in parallel on multiple computers and transpar-

ently (from the client’s perspective) assembled and returned. TheGrid is the intellectual predecessor of

Cloud computing. Cloud computing is less physically and administratively restricted than Grid

computing.

Immutability Immutability is the principle that data collected in a Big Data resource is permanent and

can never bemodified. At first thought, it would seem that immutability is a ridiculous and impossible

constraint. In the real world, mistakes aremade, information changes, and themethods for describing

information changes. This is all true, but the astute Big Data manager knows how to accrue informa-

tion into data objects without changing the pre-existing data. Methods for achieving this seemingly

impossible trick are described in Chapter 8.

Introspection Well-designed Big Data resources support introspection, a method whereby data objects

within the resource can be interrogated to yield their properties, values, and class membership.

Through introspection the relationships among the data objects in the Big Data resource can be exam-

ined and the structure of the resource can be determined. Introspection is themethod by which a data

user can find everything there is to know about a Big Data resource without downloading the complete

resource.

Large Hadron Collider The Large Hadron Collider is the world’s largest andmost powerful particle accel-

erator and is expected to produce about 15 petabytes (15 million gigabytes) of data annually [13].

Legacy data Data collected by an information system that has been replaced by a newer system, and

which cannot be immediately integrated into the newer system’s database. For example, hospitals reg-

ularly replace their hospital information systems with new systems that promise greater efficiencies,

expanded services, or improved interoperability with other information systems. In many cases, the

new system cannot readily integrate the data collected from the older system. The previously collected
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data becomes a legacy to the new system. In such cases, legacy data is simply “stored” for some arbi-

trary period of time in case someone actually needs to retrieve any of the legacy data. After a decade or

so the hospital may find itself without any staff members who are capable of locating the storage site of

the legacy data, or moving the data into a modern operating system, or interpreting the stored data, or

retrieving appropriate data records, or producing a usable query output.

MapReduce Amethod by which computationally intensive problems can be processed onmultiple com-

puters, in parallel. Themethod can be divided into amapping step and a reducing step. In themapping

step a master computer divides a problem into smaller problems that are distributed to other com-

puters. In the reducing step the master computer collects the output from the other computers.

AlthoughMapReduce is intended for BigData resources, and can hold petabytes of data, most BigData

problems do not require MapReduce.

Missing data Most complex data sets have missing data values. Somewhere along the line data elements

were not entered, records were lost, or some systemic error produced empty data fields. Big Data,

being large, complex, and composed of data objects collected from diverse sources, is almost certain

to have missing data. Various mathematical approaches to missing data have been developed; com-

monly involving assigning values on a statistical basis; so-called imputation methods. The underlying

assumption for such methods is that missing data arises at random. When missing data arises non-

randomly, there is no satisfactory statistical fix. The Big Data curator must track down the source

of the errors and somehow rectify the situation. In either case the issue of missing data introduces

a potential bias and it is crucial to fully document the method by which missing data is handled. In

the realm of clinical trials, only a minority of data analyses bothers to describe their chosen method

for handling missing data [14].

Mutability Mutability refers to the ability to alter the data held in a data object or to change the identity of

a data object. Serious Big Data is notmutable. Data can be added, but data cannot be erased or altered.

Big Data resources that are mutable cannot establish a sensible data identification system, and cannot

support verification and validation activities. The legitimate ways in which we can record the changes

that occur in unique data objects (e.g., humans) over time, without ever changing the key/value data

attached to the unique object, is discussed in Section 8.2.

For programmers, it is important to distinguish data mutability from object mutability, as it applies in

Python and other object-oriented programming languages. Python has two immutable objects: strings

and tuples. Intuitively, wewould probably guess that the contents of a string object cannot be changed,

and the contents of a tuple object cannot be changed. This is not the case. Immutability, for program-

mers, means that there are no methods available to the object by which the contents of the object can

be altered. Specifically, a Python tuple object would have no methods it could call to change its own

contents. However, a tuple may contain a list, and lists are mutable. For example, a list may have an

appendmethod that will add an item to the list object. You can change the contents of a list contained

in a tuple object without violating the tuple’s immutability.

Parallel computing Some computational tasks can be broken down and distributed to other computers,

to be calculated “in parallel.” Themethod of parallel programming allows a collection of desktop com-

puters to complete intensive calculations of the sort that would ordinarily require the aid of a super-

computer. Parallel programming has been studied as a practical way to deal with the higher

computational demands brought by Big Data. Although there are many important problems that

require parallel computing, the vast majority of Big Data analyses can be easily accomplished with

a single, off-the-shelf personal computer.

Protocol A set of instructions, policies, or fully described procedures for accomplishing a service, oper-

ation, or task. Protocols are fundamental to BigData. Data is generated and collected according to pro-

tocols. There are protocols for conducting experiments, and there are protocols for measuring the

results. There are protocols for choosing the human subjects included in a clinical trial, and there

are protocols for interacting with the human subjects during the course of the trial. All network
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communications are conducted via protocols; the Internet operates under a protocol (TCP-IP, Trans-

mission Control Protocol-Internet Protocol).

Query The term “query” usually refers to a request, sent to a database, for information (e.g., Web pages,

documents, lines of text, images) that matches a provided word or phrase (i.e., the query term). More

generally a query is a parameter or set of parameters that are submitted as input to a computer pro-

gram that searches a data collection for items that match or bear some relationship to the query

parameters. In the context of Big Data the user may need to find classes of objects that have properties

relevant to a particular area of interest. In this case, the query is basically introspective, and the output

may yield metadata describing individual objects, classes of objects, or the relationships among

objects that share particular properties. For example, “weight” may be a property, and this property

may fall into the domain of several different classes of data objects. The user might want to know

the names of the classes of objects that have the “weight” property and the numbers of object instances

in each class. Eventually the user might want to select several of these classes (e.g., including dogs and

cats, but excluding microwave ovens) along with the data object instances whose weights fall within a

specified range (e.g., 20–30 pound). This approach to querying could work with any data set that has

been well specified with metadata, but it is particularly important when using Big Data resources.

Raw data Raw data is the unprocessed, original data measurement, coming straight from the instrument

to the database with no intervening interference or modification. In reality, scientists seldom, if ever,

work with raw data. When an instrument registers the amount of fluorescence emitted by a hybridi-

zation spot on a gene array, or the concentration of sodium in the blood, or virtually any of the mea-

surements that we receive as numeric quantities, the output is produced by an algorithm executed by

the measurement instrument. Pre-processing of data is commonplace in the universe of Big Data, and

data managers should not labor under the false impression that the data received is “raw,” simply

because the data has not been modified by the person who submits the data.

Results The term “results” is often confused with the term “conclusions.” Interchanging the two concepts

is a source of confusion among data scientists. In the strictest sense, “results” consist of the full set of

experimental data collected by measurements. In practice, “results” are provided as a small subset of

data distilled from the raw, original data. In a typical journal article, selected data subsets are packaged

as a chart or graph that emphasizes some point of interest. Hence, the term “results” may refer, erro-

neously, to subsets of the original data, or to visual graphics intended to summarize the original data.

Conclusions are the inferences drawn from the results. Results are verified; conclusions are validated.

Science Of course, there are many different definitions of science, and inquisitive students should be

encouraged to find a conceptualization of science that suits their own intellectual development.

For me, science is all about finding general relationships among objects. In the so-called physical sci-

ences themost important relationships are expressed asmathematical equations (e.g., the relationship

between force,mass and acceleration; the relationship between voltage, current and resistance). In the

so-called natural sciences, relationships are often expressed through classifications (e.g., the classifi-

cation of living organisms). Scientific advancement is the discovery of new relationships or the discov-

ery of a generalization that applies to objects hitherto confined within disparate scientific realms (e.g.,

evolutionary theory arising fromobservations of organisms and geologic strata). Engineering would be

the area of science wherein scientific relationships are exploited to build new technology.

Square Kilometer Array The Square Kilometer Array is designed to collect data from millions of con-

nected radio telescopes and is expected to produce more than one exabyte (1 billion gigabytes) every

day [8].

Supercomputer Computers that can perform many times faster than a desktop personal computer. In

2015 the top supercomputers operate at about 30 petaflops. A petaflop is 10 to the 15 power floating

point operations per second. By my calculations a 1 petaflop computer performs about 250,000 oper-

ations in the time required for my laptop to finish one operation.
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WorldWide Telescope A Big Data effort from the Microsoft Corporation bringing astronomical maps,

imagery, data, analytic methods, and visualization technology to standard Web browsers. More infor-

mation is available at: http://www.worldwidetelescope.org/Home.aspx
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Section 2.1. Nearly All Data Is Unstructured and Unusable
in Its Raw Form

I was working on the proof of one of my poems all the morning, and took out a

comma. In the afternoon I put it back again.
Oscar Wilde

In the early days of computing, data was always highly structured. All data was divided into

fields, the fields had a fixed length, and the data entered into each field was constrained to a

pre-determined set of allowed values. Data was entered into punch cards with pre-

configured rows and columns. Depending on the intended use of the cards, various entry

and read-out methods were chosen to express binary data, numeric data, fixed-size text, or

programming instructions. Key-punch operators produced mountains of punch cards. For

many analytic purposes, card-encoded data sets were analyzed without the assistance of a

computer; all that was needed was a punch card sorter. If you wanted the data card on all

males, over the age of 18, who had graduated high school, and had passed their physical

exam, then the sorter would need tomake 4 passes. The sorter would pull every card listing

amale, then from themale cards it would pull all the cards of people over the age of 18, and

from this double-sorted sub-stack, it would pull cards thatmet the next criterion, and so on.
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As a high school student in the 1960s, I loved playing with the card sorters. Back then, all

data was structured data, and it seemed to me, at the time, that a punch-card sorter was

all that anyone would ever need to analyze large sets of data. [Glossary Binary data]

How wrong I was! Today, most data entered by humans is unstructured in the form of

free-text. The free-text comes in email messages, tweets, and documents. Structured data

has not disappeared, but it sits in the shadows cast by mountains of unstructured text.

Free-textmay bemore interesting to read than punch cards, but the venerable punch card,

in its heyday, wasmuch easier to analyze than its free-text descendant. To get much infor-

mational value from free-text, it is necessary to impose some structure. This may involve

translating the text to a preferred language; parsing the text into sentences; extracting and

normalizing the conceptual terms contained in the sentences; mapping terms to a stan-

dard nomenclature; annotating the terms with codes from one or more standard nomen-

clatures; extracting and standardizing data values from the text; assigning data values to

specific classes of data belonging to a classification system; assigning the classified data to

a storage and retrieval system (e.g., a database); and indexing the data in the system. All of

these activities are difficult to do on a small scale and virtually impossible to do on a large

scale. Nonetheless, every Big Data project that uses unstructured data must deal with

these tasks to yield the best possible results with the resources available. [Glossary Parsing,

Nomenclature, Nomenclature mapping, Thesaurus, Indexes, Plain-text]

Section 2.2. Concordances

The limits of my language are the limits of my mind. All I know is what I have words

for. (Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.)
Ludwig Wittgenstein

A concordance is a list of all the differentwords contained in a text with the locations in the

text where each word appears. Concordances have been around for a very long time,

painstakingly constructed from holy scriptures thought to be of such immense value that

every word deserved special attention. Creating a concordance has always been a straight-

forward operation. You take the first word in the text and you note its location (i.e., word 1,

page 1); then onto the second word (word 2 page 1), and so on. When you come to a

word that has been included in the nascent concordance, you add its location to the exist-

ing entry for the word. Continuing thusly, for a few months or so, you end up with a con-

cordance that you can be proud of. Today a concordance for the Bible can be constructed

in a small fraction of a second. [Glossary Concordance]

Without the benefit of any special analyses, skimming through a book’s concordance

provides a fairly good idea of the following:

– The topic of the text based on the words appearing in the concordance. For example, a

concordance listing multiple locations for “begat” and “anointed” and “thy” is most

likely to be the Old Testament.
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